Danli Luo

E-mail: danlil@uw.edu *Portfolio:* danli-luo.com

Research Interests	Computational Fabrication, Sustainable Making, Material-Driven Design		
EDUCATION	University of Washington , Seattle, WA Ph.D, Human-Centered Design & Engineering Advisor: Nadya Peek	2021 - present	
	Carnegie Mellon University , Pittsburgh, PA M.S., Materials Science & Engineering	2015 - 2017	
	Imperial College , London, UK B.Eng., Materials Science & Engineering	2010 - 2013	
Professional Experience	Accenture Labs , Seattle, WA Technology R&D Associate Research Principal Mentors: Wade Ingram, Andreea Danielescu	Jun - Sep 2024	
	Human-Computer Interaction Institute, CMU , Pittsburgh, PA Research Associate Mentor: Lining Yao	2018 - 2021	
HONORS AND Awards	MIT Technology Review 35 Innovators Under 35 Heidelberg Laureate Forum Young Researcher Fast Company's World Changing Ideas Honorable Mention	2024 2024 2024	
PUBLICATION	 Danli Luo, Aditi Maheshwari, Andreea Danielescu, Jiaji Li, Yue Yang, Ye Tao, Lingyun Sun, Dinesh K. Patel, Guanyun Wang, Shu Yang, Teng Zhang, Lin- ing Yao. Autonomous self-burying seed carriers for aerial seeding. <i>Nature</i> 614, 463–470 (2023). 		
	12. <u>Danli Luo</u> , Daniela Rosner, Nadya Peek. Doufu, Rice Wine, and 面饼: Supporting the Connections between Precision and Cultural Knowledge in Cooking. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23). Association for Computing Machinery, New York, NY, USA, Article 475, 1–13.		
	 Zihan Yan, Yanhong Wu, <u>Danli Luo</u>, Chao Zhang, Qihang Jin, Wei Chen, Yingcai Wu, Xiang 'Anthony' Chen, Guanyun Wang, and Haipeng Mi. 2023. NaCanva: Exploring and Enabling the Nature-Inspired Creativity for Children. Proc. ACM HumComput. Interact. 7, MHCI, Article 215 (September 2023), 25 pages. 		
	 Guanyun Wang, Yue Yang, Mengyan Guo, Kuangqi Zhu, Zihan Yan, Qiang Cui, Zihong Zhou, Junzhe Ji, Jiaji Li, <u>Danli Luo</u>, Deying Pan, Yitao Fan, Teng Han, Ye Tao, Lingyun Sun. 2023. ThermoFit: Thermoforming Smart Orthoses via 		

Metamaterial Structures for Body-Fitting and Component-Adjusting. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT '23) 7, 1, Article 31 (March 2023), 27 pages.

- Danli Luo, Chao Zhao, Guanyang Xue, Zhibo Cao, Alparslan Oztekin, Xuanhong Cheng. (2022). Label-free focusing of viral particles under a temperature gradient coupled with continuous swirling flow. *RSC Advances*, 12(7), 4263-4275.
- Zihan Yan, Jiayi Zhou, Yufei Wu, Guanhong Liu, <u>Danli Luo</u>, Zihong Zhou, Haipeng Mi, Lingyun Sun, Xiang'Anthony' Chen, Ye Tao. Shoes++: A Smart Detachable Sole for Social Foot-to-foot Interaction. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT '22) 6, 2, Article 85 (July 2022), 29 pages.
- Ye Tao, Yi-Chin Lee, Haolin Liu, Xiaoxiao Zhang, Jianxun Cui, Catherine Mondoa, Mahnoush Babaei, Jasio Santillan, Guanyun Wang, <u>Danli Luo</u>, Di Liu, Humphrey Yang, Youngwook Do, Lingyun Sun, Wen Wang, Teng Zhang, Lining Yao. Morphing pasta and beyond. *Science Advances* 7, 19, eabf4098 (2021).
- Humphrey Yang, <u>Danli Luo</u>, Kuanren Qian, Lining Yao. Freeform Fabrication of Fluidic Edible Materials. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 620, 1–10.
- Lingyun Sun, Jiaji Li, Yu Chen, Yue Yang, Zhi Yu, <u>Danli Luo</u>, Jianzhe Gu, Lining Yao, Ye Tao, Guanyun Wang. FlexTruss: A Computational Threading Method for Multi-material, Multi-form and Multi-use Prototyping. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21), Association for Computing Machinery, New York, NY, USA, 1–12.
- Lingyun Sun, Yue Yang, Yu Chen, Jiaji Li, <u>Danli Luo</u>, Haolin Liu, Lining Yao, Ye Tao, Guanyun Wang. ShrinCage: 4D Printing Accessories that Self-Adapt. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 432, 1–12.
- <u>Danli Luo</u>, Jianzhe Gu, Fang Qin, Guanyun Wang, Lining Yao. E-seed: Shape-Changing Interfaces that Self Drill. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST '20). Association for Computing Machinery, New York, NY, USA, 45–57.
- Yuxuan Yu, Haolin Liu, Kuanren Qian, Humphrey Yang, Matthew McGehee, Jianzhe Gu, <u>Danli Luo</u>, Lining Yao, Yongjie Jessica Zhang. Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing. *Computer-Aided Design* 122 (2020): 102817.
- Jianzhe Gu, Vidya Narayanan, Guanyun Wang, <u>Danli Luo</u>, Harshika Jain, Kexin Lu, Fang Qin, Sijia Wang, James McCann, Lining Yao. 2020. Inverse Design Tool for Asymmetrical Self-Rising Surfaces with Color Texture. In Proceedings of the 5th Annual ACM Symposium on Computational Fabrication (SCF '20). Association for Computing Machinery, New York, NY, USA, Article 14, 1–12.
- POSTER & DEMO 2. <u>Danli Luo</u>, Nadya Peek. 2022. Demonstrating a Fabricatable Bioreactor Toolkit for Small-Scale Biochemical Automation. In Adjunct Proceedings of the 35th

	Annual ACM Symposium on User Interface Software and Technolo Adjunct). Association for Computing Machinery, New York, NY, 81, 1–3.		
	 <u>Danli Luo</u>, Humphrey Yang, Malika Khurana, Kuanren Qian, Demonstrating Freeform Fabrication of Fluidic Edible Materi Abstracts of the 2021 CHI Conference on Human Factors in Co (CHI EA '21). Association for Computing Machinery, New Yo ticle 201, 1–4. 	Lining Yao. 2021. als. In Extended mputing Systems ork, NY, USA, Ar-	
Patent	 Lining Yao, <u>Danli Luo</u>, Jianzhe Gu, Fang Qin, Guanyun Wang Methods and devices for biomimetic hygromorphic composite. US Patent App. US 2022/0322599 A1, patent granted. 		
Service	Organizing Committee, Student Volunteer Co-Chair		
	ACM UIST	2024	
	Program Committee, Associate Chair	0001 0000	
	ACM Chinese CHI Paper Reviewing	2021, 2023	
	ACM CHI	2023, 2024, 2025	
	ACM UIST	2023, 2024	
	ACM TEI	2024	
	ACM DIS	2023	
	ACM Chinese CHI	2022	
	Session Chairing	2022	
	ACM SCF Student Volunteer	2022	
	ACM SCF	2019	
STUDENTS	Taylor Hilton, Masters, Materials Science and Engineering, UW	2024	
Mentored	Yuecheng Peng, Masters, Global Innovation Exchange, UW	2023	
	Malika Khurana, Masters, Computational Design, CMU	2020	
	Prabin Paneru, Research Intern, CMU	2019	
	Kanul Sharma, Masters, Mechanical Engineering, CMU	2019	
SELECTED PRESS	Nature Cover Story Gone to earth		
	Wall Street Journal Five farming technologies tackle climate change threats		
	London Design Biennale 2023, Automorph Network Self-burying seed		
	Science Friday A new twist on sowing seeds		
	Reuters Wooden seed carriers mimic self-burying seeds		
	New Atlas Plant-inspired E-seeds drill themselves into the dirt when moistened		
	Futurity Wooden carrier unwinds to bury seeds		
	ZME Science Scientists create wooden seeds carrier that imitates self-burying seeds		
	New York Times Flat pasta that turns into 3-D shapes — just add boiling water		

Science Magazine A new twist on pasta dough could reshape food manufacturing **ABC News** Groovy flat-packed pasta could help revolutionize food production

Science Friday A bowl full of pasta engineering

Smithsonian Magazine Mighty morphing 'flat-pack' pasta changes shape in boiling water

UK Daily Mail Don't tell the Italians! 'Flat-pack pasta' morphs from 2D to 3D while cooking and could slash the need for excessive plastic packaging

Designboom This flatpack pasta will morph into all sorts of 3D shapes when cooked